Effector-triggered innate immunity contributes Arabidopsis resistance to Xanthomonas campestris.
نویسندگان
چکیده
Xanthomonas campestris pv. campestris, the causal agent of black rot disease, depends on its type III secretion system (TTSS) to infect cruciferous plants, including Brassica oleracea, B. napus and Arabidopsis. Previous studies on the Arabidopsis-Pseudomonas syringae model pathosystem have indicated that a major function of TTSS from virulent bacteria is to suppress host defences triggered by pathogen-associated molecular patterns. Similar analyses have not been made for the Arabidopsis-X. campestris pv. campestris pathosystem. In this study, we report that X. campestris pv. campestris strain 8004, which is modestly pathogenic on Arabidopsis, induces strong defence responses in Arabidopsis in a TTSS-dependent manner. Furthermore, the induction of defence responses and disease resistance to X. campestris pv. campestris strain 8004 requires NDR1 (NON-RACE-SPECIFIC DISEASE RESISTANCE1), RAR1 (required for Mla12 resistance) and SGT1b (suppressor of G2 allele of skp1), suggesting that effector-triggered immunity plays a large role in resistance to this strain. Consistent with this notion, AvrXccC, an X. campestris pv. campestris TTSS effector protein, induces PR1 expression and confers resistance in Arabidopsis in a RAR1- and SGT1b-dependent manner. In rar1 and sgt1b mutants, AvrXccC acts as a virulence factor, presumably because of impaired resistance gene function.
منابع مشابه
Arabidopsis HFR1 Is a Potential Nuclear Substrate Regulated by the Xanthomonas Type III Effector XopDXcc8004
XopDXcc8004, a type III effector of Xanthomonas campestris pv. campestris (Xcc) 8004, is considered a shorter version of the XopD, which lacks the N-terminal domain. To understand the functions of XopDXcc8004, in planta, a transgenic approach combined with inducible promoter to analyze the effects of XopDXcc8004 in Arabidopsis was done. Here, the expression of XopDXcc8004, in Arabidopsis elicit...
متن کاملxopAC-triggered Immunity against Xanthomonas Depends on Arabidopsis Receptor-Like Cytoplasmic Kinase Genes PBL2 and RIPK
Xanthomonas campestris pv. campestris (Xcc) colonizes the vascular system of Brassicaceae and ultimately causes black rot. In susceptible Arabidopsis plants, XopAC type III effector inhibits by uridylylation positive regulators of the PAMP-triggered immunity such as the receptor-like cytoplasmic kinases (RLCK) BIK1 and PBL1. In the resistant ecotype Col-0, xopAC is a major avirulence gene of Xc...
متن کاملA conserved carboxylesterase is a SUPPRESSOR OF AVRBST-ELICITED RESISTANCE in Arabidopsis.
AvrBsT is a type III effector from Xanthomonas campestris pv vesicatoria that is translocated into plant cells during infection. AvrBsT is predicted to encode a Cys protease that targets intracellular host proteins. To dissect AvrBsT function and recognition in Arabidopsis thaliana, 71 ecotypes were screened to identify lines that elicit an AvrBsT-dependent hypersensitive response (HR) after Xa...
متن کاملNatural Genetic Variation of Xanthomonas campestris pv. campestris Pathogenicity on Arabidopsis Revealed by Association and Reverse Genetics
ABSTRACT The pathogenic bacterium Xanthomonas campestris pv. campestris, the causal agent of black rot of Brassicaceae, manipulates the physiology and the innate immunity of its hosts. Association genetic and reverse-genetic analyses of a world panel of 45 X. campestris pv. campestris strains were used to gain understanding of the genetic basis of the bacterium's pathogenicity to Arabidopsis th...
متن کاملThe role of microRNAs and phytohormones in plant immune system
The plant-pathogen interaction is a multifactor process that may lead to resistance or susceptible responses of plant to pathogens. During the arms race between plant and pathogens, various biochemical, molecular and physiological events are triggered in plant cells such as ROS signaling, hormone activation and gene expression reprogramming. In plants, microRNAs (miRNAs) are key post-transcript...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- Molecular plant pathology
دوره 11 6 شماره
صفحات -
تاریخ انتشار 2010